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II. INTRODUCTION

I The performance of an LMS (least mean square) adaptive array [11

I can be influenced by the modulation on an interference signal. For

example, pulsed interference can make the weights in the array alternate

back and forth between two sets of values, one when the interference is

on and the other when it is off [2]. Interference modulation has two

deleterious effects on the array. First, it can make the array modulate

the desired signal. Second, it can cause the array output SINR (signal-

to-interference-plus-noise ratio) to vary with time. In a digital

communications system, such SINR variation usually results in an

increased bit error probability. For these effects to occur, the

modulation parameters must be properly chosen. For example, the

modulation rate must be commensurate with the array speed of response.

In previous studies, the authors have examined the effects on an

adaptive array of interference with pulsed modulation [21, with

sinusoidal, suppressed carrier envelope modulation [31 and with

arbitrary periodic envelope modulation [4]. Each of these studies

involved interference with envelope modulation but not phase

modulation.

The purpose of the present report is to extend the earlier work to

handle interference with phase modulatibn. We assume an adaptive array

receives an interference signal with a periodic but otherwise arbitrary

phase modulation. We present a method of solving for the resulting

I time-varying array weights. Using this method, we then study as an

*1
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example the behavior of a 2-element array that receives an interference

signal with sinusoidal phase modulation. We show how each interference

signal parameter affects the desired signal modulation, the SINR

variation and the bit error probability.

In Section I, we formulate the problem and present the

mathematical technique for solving for the array weights. In Section

III, we describe the 2-element array and the phase modulated

interference signal and present our numerical results. Section IV

contains the conclusions.

II. FORMULATION OF THE PROBLEM

Assume an adaptive array consists of J isotropic elements with half

wavelength spacing, as shown in Figure 1. Let xj(t) be the analytic

signal received on element j. xj(t) is multiplied by a complex weight

wj and then summed to produce the array output s(t). The array weights

are controlled by LMS (least mean square) feedback loops [1], which

obtain each weight wj by integrating the product of xj(t) with the error

signal e(t). The error signal is the difference between the reference

signal r(t) and the array output s(t). The array weights satisfy the

differential equation

dW + k0W = kS (1)

where W = [w1, w2, ... , wj]T is the weight vector, t is time, I is the

the covariance matrix,

2
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I = E(X*XT) (2)

I S is the reference correlation vector,

I S = E[X*r(t)l , (3)

I and k is the LMS loop gain. In these equations, X is the signal vector,

X = [x1 (t), x2 (t), ..., x(t)]T (4)

T denotes transpose, * complex conjugate and E(.) expectation.

We assume that a desired signal and an interference signal are

incident on the array and that thermal noise is present in each element

signal. The signal vector then contains three terms,

X = Xd + Xi + Xn  , (5)

where Xd, Xi, and Xn are the desired, interference and noise vectors,

respectively.

Let the desired signal be a CW (single frequency) signal incident

from angle Od relative to broadside. (e is defined in Figure 1.) The

desired signal vector is then

XA J(wot +d)U

Xd=d ed (6)

where Ad is the amplitude, wo is the carrier frequency, *d is the

carrier phase angle, and Ud is a vector containing the interelement

phase shifts,

t3
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-J Od -jK~ d T
Ud = [l, e ... e (7)

where

d= sin ed , (8)

and where, to simply notation, we let

K = J - 1 (g)

We assume *d is a random variable uniformly distributed on (0,2%).

Next, assume an angle modulated interference signal arrives from

angle 0i. The interference signal vector is

Xi = ie + i)U(t) (10)

with

jyi (t)
e

j[yi (t-Ti)-'j ie

Ui~t) eJ[Yi (t-2Ti )-20i
Ui(t) = e ,(11)

ej[yi (t-KTj )-K~i 1

5



where yi(t) is the angle modulation as received on element 1, Ai is the

interference amplitude and Pi is the carrier phase angle. Ti and i are

the interelement time delay and carrier phase shift,

T. = IT sin e. , (12)

and

i = WoT. = i sinO. (13)

We assume i is a random variable, uniformly distributed on (0,27r) and

statistically independent of *d-

Finally, we assume each element signal contains a zero-mean,

independent Gaussian thermal voltage nj(t) of power a2. The noise

vector is

T
X = [nl(t), n2 (t) I, nd(t)] (14)

where

E[nj (t)n k(t)] = , 1 j, k 4 J , (15)

with 6jk the Kronecker delta. The nj(t) are assumed statistically

independent of both 4d and fl.

Under these assumptions, the covariance matrix in (2) is the sum of

a desired, an interference and a noise term,

V = Dd + 0i +  n (16)

6
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The desired signal term is

D E(x* xT A-. T

d XdX d d d (17)

The interference term is

emeJ~1~ it )- i I J[ OK (t ) -Kfi

eJ[lO( t ) + i ]  eJ1X1K(t)-(K-1)fi ]

(D =E(X*XT )2
i i i = i

eJ[×KO(t)+KDi ] ej [XKI(t)+(K-I) i ]
e ei

(18)

where

Xpq(t) = Yi(t-qTi) - Yi(t-pTi) , (19)

and where p and q are integers between 0 and K. The noise term is

In =  2 1  , (20)

with I the identity matrix.

7



To compute the reference correlation vector S in (3), we must

specify the reference signal r(t). In practical applications, the

reference signal is derived from the array output [5,6,71. To make the

array perform properly, it must be a signal correlated with the desired

signal and uncorrelated with the interference. Here we assume the

reference signal to be a replica of the desired signal,

wj(wot+pd)
r(t) = Ar e (21)

where Ar is its amplitude. Equation (3) then yields

S = Ar Ad Ud  (22)

When (16) and (22) are substituted into (1), we find that the

weights satisfy a system of differential equations with constants on the

right but with time-varying coefficients (due to Di). In the rest of

this section, we develop a method for solving this system of equations.

To solve (1), we do several things. First, we write the

interference covariance matrix in a more compact form. We define J

vectors,

V = (1, 0, 0 ... 0,0) T
0

V1 = (0, e , 0 ... 0,0)

-J21i T
V2  = (0,0 , e . .... 0,0)

8
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and

-jK*i r
VK = (0, 0, 0 ... 0, e ) (23)

Note that these J vectors form an orthonormal set,

VTVk = 6jk 0 4 j,k 4 K (24)

By using these vectors, Oi in (18) may be written

K K
= A2  X eJXpq(t) V* VT  (25)

i i p=O q=O p q

so (1) becomes

K K
dW + k [A2 Ud UT + A? I I eJXpq ( t ) V* VT + a21]W =kArAdUd

ld dd I p=O q=0 p q rdd

(26)

Next, we normalize (26). Dividing by kG2 gives

K K
dW(t') + [-2+ C . ejXpq(t') V* VT]W(t ' ) =L A id Ud2 1 p=O q=O pqd-d '

(27)

where

€2 = I + d Ud U T (28I)

* 1 9
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2
= Ad = input signal-to-noise ratio (SNR) per element,

i= Ai2 = input interference-to-noise ratio (INR) per element,

and where

t = k02t = normalized time . (29)

Also, we note that the constant L on the right will just appear as a

scale factor in the solution for W(t'). It has no effect on the array

output SINR to be discussed below. Hence we arbitrarily set A r = 1 to

eliminate it. Equation (27) is then

K K
dW(t') + pOD + eJxpq(t') V* vT]w(t ,) = /- U * (30)

2 i p=.q=0 p q d d

Next, in order to be able to solve (30), we make the important

assumption that the angle modulation Yi(t) is periodic. If
jXpq(t')

Yi(t) is periodic, the functions e are also periodic.

Therefore we may expand each of them in a Fourier series. In order to

simplify notation later, we shall also include the constant Ei in this

expansion. Thus, we write

iXpq(t) jt' t
i e = ). ftpq e m , (31)

10



I
I jXpq(t')

where fLpq is the £th Fourier coefficient of Ei e and w' is the

normalized fundamental frequency of yi(t'), i.e.,

8 2 , (32)

where wm is the fundamental frequency of yi(t). We note for later use

that if p=q, then xpq(t') = 0, so the series in (31) contains only a

zero frequency term, i.e.,

f pp = 6 to (33)

Also, it is easily shown that

f f(34)
fqp -=fpq

and

I I

In addition to assuming Yi(t) periodic, we shall also assume that

the bandwidth of the interference is finite, i.e., we assume that only a

finite number of terms are nonzero in (31). Suppose the coefficients in

(3.) are zero for ILI > L, where L is some integer.

Then

Jxpq(t') L jnw't'
i e Z ftpq e m (36)

I
I.1



Since (30) is a linear differential equation with periodic

coefficients, the solujtion for W(t') will be a periodic function of time

after any initial transients have died out [81. In this paper, we shall

not attempt to solve for initial transients, but shall consider only the

periodic steady-state solution. Once any initial transients are over,

W(t') can be written as a Fourier series,

M j nwit'
W(t') = \ Cn e m (37)

where Cn is a vector Fourier coefficient. Substituting this series into

(30) and enforcing the resulting equation for each frequency component

separately gives

L K K
(? 2 +jnw'I)C + f Lp q * V C U6no - < n < .2 =n-L p=O q z pq Cn-k dno

(38)

Equation (38) is an infinite system of vector equations, one for each n.

To solve for the Cn, we first assume that there is some integer N such

that the Fourier coefficients Cn are negligible for Inl > N. In other

words, we assume W(t') can be adequately approximated by a finite sum

N jn't'
W(t') = Cn e m (39)

n=-N

Such an approximation is reasonable because the feedback loops

controlling the array weights in W(t') are lowpass filter loops that

cannot respond above a certain speed.

12
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If we set Cn=O for In > N, then (38) yields a finite system of

equations for the remaining Cn. Each vecton Cn has J scalar components,

so the result is a system of (2N+I)J linear equations in the unknown

scalar components. One could solve for W(t') by solving this system of

equations numerically.

However, rather than work with (38) directly, we shall instead

transform variables first. We do this because the resulting equations

have a more systematic form. Specifically, we shall express each Cn in

terms of its components along the vectors Vk in (23). (Since each Cn

has J components, the J orthonormal vectors Vk can serve as basis

vectors.) We write

K
C= V (40)

Cn k=O n,k (

where the an,k are scalar coefficients. an,k is the component of Cn

along the unit vector Vk* Substituting (40) into (38), multiplying

the result on the left by VT (for a=0,1,2, ... , K) and using (24) yieldsa e o

the equation

K L Kjnwa + 2. 2. f t d rVT Ud

m n,a k=O ak n,k L=-L q=0 laq n-t,q d d'no

(41)

where

= T V (42)

13



In (41), we have 0 ' a 4 K and it is understood that 'm,q 0 whenever

ml > N. Qak is readily found from (23) and (28):

Qak : 6 ak + r d e . (43)

Also, we find from (7) and (23) that

T(d-i) * = a K .(44)a d "

Equation (41), when written out, yields a finite system of

equations of the form

MA = B , (45)

where A is a vector containing the unknown coefficients %,k ,

A N,O'aN,li .... ' N,K' I-l, I ' .... 1'N-1,K1 .... "-N,I' .... lo-N,K ) T '9A

(46)

B is a vector obtained from the right hand side of (41), and M is the

matrix of coefficients obtained from the left side of (41). We give an

example of M and B below in Section III. The numerical results

presented below have been obtained by solving (41) numerically.

For this method to yield accurate results, N must be chosen large

enough that at least 2LJ of the an,k are essentially zero on each end of

the vector A in (46). If this vector has 2LJ zeros on each end, the

solution obtained from (41) will yield the same result as the solution

14
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of the infinite system in (38). In practice, a suitable value of N may

be determined by increasing N until the A vector has 2LJ negligible

terms on each end and until the values of the an,k in the middle of the

vector A are unaffected by further increases in N. Experience shows how

large N must be in specific cases*. Once the an,k have been found, the

Cn may be found from (40) and W(t') from (39).

The time-varying array weights have two effects on array

performance. They cause the array to modulate the desired signal, and

they cause the array output SINR to vary with time. In the remainder of

this section, we discuss the calculation of these effects.

Given a time-varying weight vector W(t'), the desired signal

component of the array output is

Sd(t') = Ad WT(tb) Ud ej (Wt' + *d), (47)

12
where wo = . To study the modulation on sd(t), we define

Jfld(t') AdT
ad(t') e A W(t-)Ud . (48)

Then ad(t') = AdIWT(t')Ud is the envelope modulation and nd(t') =

4WT(t')Ud is the phase modulation. Furthermore, we define adn(t') to be

*The numerical solution of (41) was done using a Gauss elimination
routine with full pivoting [9.] We have not examined the eigenvalue
behavior of M in detail, but we did not experience any convergence
problems or other unusual behavior due to ill-conditioning with this
approach.

15



the envelope normalized to its value in the absence of interference,

i.e.,

adn(t) = ad(t') (49)
n A dIWoTU di

where Wo is the steady-state weight vector that would occur without

interference,

Wo = (5d + Dn)- 1 S • (50)

((Dd, Dn and S are given in (17), (20) and (22).) Our results below are

presented in terms of adn(t'), because the effect of the interference

can be seen directly by comparing adn(t') with unity.

The output desired signal power is

d(t = 1 EtI d(t )I I = 7 d wT'tI U * (51)

The output interference power is

P.(t') A2 1WT(t') Ui (t)j
2  ' (52)

1 7i

where Ui(t') is the vector of phasors given in (11) but written

in terms of normalized time t' = ka2t. The output thermal noise power

is

P (t ) = 2 wT(t') W*(t) . (53)

16
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From these quantities, the output interference-to-noise ratio (INR),

INR = Pi(t-) (54)

and the output signal-to-interference-plus-noise ratio (SINR),

SINR = Pd(t') , (55)

Pi(t') + Pn(t)

may be computed as functions of t.

In the next section, we present an example using this technique and

discuss the effects of a phase modulated interference signal on the

adaptive array.

I1. AN EXAMPLE

Consider an array with two elements, so J=2 and K=1. Let the

interference have sinusoidal phase modulation,

SI

yi(t') = asinWmt , (56)

where 0 is the maximum phase deviation (or the modulation index) and W'

is the normalized modulation frequency. Then one finds from (19) and

standard trigonometric identities that
I

jx01(t') jB'sin[W' (t' - T_) - r ] (57)
e =e m

17



where

'T'.
B = 2Bsin m (58)--

(and T' = ka2T). Using the Fourier Series expansion [101,1

jzsinP jtp
e = Jt(z)e (5q)

we find

j X0 (tjP'I t'

e= f e m (60)

with

W' T.
j m 1 +

f -- =id W ) e -  2 + 7 (61)

From (34), we also have

* = f (62)
1 = -01 (-1) fo, o

since

J_ (B') = (-1), J(B') . (63)

To truncate the series in (60), we use the fact that

Jt(z) = 0 fer iXI > z + 1 • (64)

18
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Thus, we approximate

jxj(t') L j9W t
e = f e m (65)

i t=-L 101

with

(A) Ti( )

L = {0' + I1 {20 sin m 2-i + (66)

where {r} denotes the smallest integer greater than r.

Writing out (41) with L=2 as an example and with K=1 gives the

following matrix of coefficients M in (45):

..... 0 . 2 0 FI d2 Z 0 1  .F......

. . . . .... .....

0 0 0 F.2 0 F _I d2 Z 0 F1  0 F2

0 F* 0 F* 0 Z d2  F * 0 F* 0 0 0 . ..
2 1 -1 -2

0 0 0 F-2  0 F-1 dl Z 0 F1  0 F2  0 ....

0 F 0 F 0 Z d1 F* 0 F* 0 0 0 ....
2 1 -1 -2
0 0 0 F-2 0 F-1 do Z 0 F1  0 F2 0 ....

o F *0 F 0 Z* d0 F * 0 F * 0 0 0 ..
2 1 -1 -2
0 0 0 F..2 0 F..1d.1 Z 0 F1 0 F2  0 ..

0 F* 0 F* 0 Z* d-1 F* 0 F* 0 0 0....
2 1 -1 -2

19



The vectors A and S in (45) are

aN,O 0

-2,0

0

which, from (34), also implies

F* * f(69)
F -901 =  O1

and where

cl., 1

dn, = fo0 + QO + Jnwm =  + Ed +  i + inwm' (70)

20
which from(34),alsoimplie



and

Z = 01 + fo01 = d e + iJ o(B') (71)

To obtain the results presented below, we have solved this system (with

the appropriate values of L) numerically for the an,k, and then

evaluated Cn and W(t') from (40) and (39).

Let us now discuss the results obtained from these calculations.

In part A below, we show typical curves of desired signal modulation,

output INR and SINR as functions of time. In parts B-E, we describe the

effect of each signal parameter on the desired signal modulation. In

part F, we assume the array is used in a DPSK (differential phase shift

keyed) digital communication system [111 and show how the bit error

probability is affected by the interference signal parameters Ei, 5 and

f.m

A. Typical Waveforms

Figure 2 shows typical curves of the normalized envelope modulation

adn (t') for e=300, i=450, d=10 dB, Ei=30 dB, fm -- ' - 10dnd i d 1 TIT

f= n = 108 , and 6=102, 103, 10 and 105. These curves illustrate

that the envelope modulation on the desired signal can be substantial

for larger values of 6.

It turns out that for this 2-element array, angle modulated

interference does not cause phase modulation on the desired signal.

This result was discovered by calculating "d(t'), for numerous values

21
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Of f3, 8, f' and i. These calculations snow that nWd(t) does notm d
change with time regardless of the signal parameters. The reason for

this behavior is as follows. Roth the amplitude and phase of each

weight in the array vary sinusoidally with time. The amplitudes of the

two weights are equal at each instant of time. The phase angle of each

weight contains a term constant with time, which depends on interference

arrival angle, and a term that varies sinusoidally with time. The

sinusoidally varying term is 1800 out of phase on the two weights. When

a desired signal is passed through these weights the phase modulation

produced on the desired signal by one weight is 1800 out of phase with

that produced by the other weight, and the sum signal at the array

output contains no phase modulation.

Figures 3 and 4 show typical curves of the output INR and SINR as

functions of time, over one period and for the same signal parameters as

in Figure 2. Figure 3 shows that the average INR increases and the

array SINR decreases as 8 increases. Also, as a increases, the INR and

SINR variations with time are more pronounced. At low 8, the INR and

SINR are constant, because the array feedback tracks the incoming phase

modulation.

In general one finds that the array behavior changes substantially

as the signal parameters 8d, td' ei, i' f' and 8 are varied. In partsdt m
B-E of this section, we examine the effect of each signal parameter on

the desired signal modulation. In part F, we show how bit error

probability is affected by the angle modulated interference when the

array is used in a DPSK communication system.

23
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To describe the desired signal modulation, we shall define three

quantities. First, we let amin and amax be the minimum and maximum

values of adn(t') during the modulation period. Then, we define

m = amax - amin • (72)
amax

m is the envelope variation normalized to its peak. It may be thought

of as "fractional modulation", analogous to percentage modulation in AM.

In Parts B-E below, we describe the effect of each signal parameter on

amax and m.

B. The Effect of Angle of Arrival

Desired signal modulation effects are small when 6i is far from ed.

When ei is close to Od , the envelope variation m is large and the peak

amax is small. However, when 6i is equal to Od , the desired signal is

nulled, so m drops to a small value.

Figures 5 and 6 show typical curves of m and amax as functions of

e. for 0d=00, d=10 dB, .i=40 dB, f'=10 3 and f =108 . Four different
I d d 1 m 0

curves are shown, for B 2x10 3, 4x10 3, 8x10 3 and 104. It is seen that

m is large and amax is small when e1 is near 6d. We note also that when

Oi is extremely close to ed, m drops to zero. This behavior occurs

because as Oi becomes very close to Od , the peak-to-peak variation

(amax-amin) approaches zero more quickly than amax does, so m goes to

zero. However, this behavior of m is no importance, since the desired

signal is nulled anyway.

26



I

"0 4

C

- 'i 8 )

C.

* I)

/

( C

'/ 5 8xlIO\'

, / 4x I03  "*

c 2 x 10s 3

-60. -30. 0. 30. 60. 90.

e i (DEGREES )

Figure 5. m versus 8i .

Bd=O ,  d=lO dB, &i=40 dB,

3) '

27

IC

C 2xiO "\ ']'



Cl max 83=2 X10 3

f'=10 3 X 103
A



i

C. The Effect of Modulation Index and Frequency

The peak amax is large at low f' and drops as f' increases. The

higher 5, the farther a drops at high f' The variation m is smallmax M.

at low f', peaks at intermediate values of f and drops as f' increases.mm m

For low and intermediate f', m is largest for high a. At high f',
i m

drops more rapidly with larger values of 0.

Figures 7 and 8 illustrate these results for the case 6d= 30 ° ,

e. =45-, d=10 dB, Ei=30 dB, f,=10 8 and for values of a between 2xO 3

1 1 0

and 1 4  It is seen in Figure 7 that a is large for low f and
max in

drops as f' increases. This behavior is due to the array speed of

mm
response, which limnits its ability to track the modulation at high f'

m, seen in Figure 8, peaks at intermediate f'.m

D. The Effect of Interference-To-Noise Ratio

For all values of f', the variation m is largest for high INR.

a is high at low f' and drops at high f'.
max in i

Figures 9 and 10 show the behavior of amax and m versus fm for

4, '=10 e.=d= 300° 6i=450, d=10 dB, a=10, f=O8 and for four values of Ci

between 20 and 45 dB. It may be seen in Figure 9 that ama x peaks

slightly at high INR, for values of f' around 400. This behavior is due
m

to the change in array speed of response with INR.
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E. The Effect of Desired Signal-To-Noise Ratio

m is largest and amax is smallest for low Ed. As Ed is increased,

m decreases and amax increases.

Figures 11 and 12 illustrate this behavior. Figure 11 shows m and

Figure 12 shows amax, both versus f for e 300, e.=450, E=30 dB,

f,=108 , a=10, and for four values of Ed between 10 and 40 dB. It is
0d

seen that m peaks at intermediate f' with the value of fm at the peakm wtthvauofmathepk

dependent on Ed.

F. Bit Error Probability

To evaluate the effect of the time-varying SINR, we have computed

the bit error probability when the desired signal is DPSK biphase

modulated signal. We assume the desired signal bit duration is large

compared with the propagation time across the array but small compared

to the interference modulation period 2w/mm . Also, we assume the

reference signal is replica of the desired signal. Under these

assumptions the array weights with the DPSK biphase modulated desired

signal are the same as those produced with a CW signal. The effective

bit error probability Pe has by obtained by averaging the instantaneous

bit error probability over one period o+ the interference modulation.

The instantaneous bit error probability Pe(t') is related to the SINR

by [12],
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Pe(t,) :1 e-SINR(t') (73)
e YI
Figure 13 shows typical curves of P as a function of f' fore M

0 d=300, 6 =450 , c d=10 dB, E i=30 dB, f'=O8 and for four values of 8
bewen x13 ad14. tlwf

between 2x1 3 and 10. At low f', where the interference bandwidth

is too small to cause any degradation in the array performance, Fe stays

constant at a value that does not depend on 8. This value of Fe is

determined simply by the input INR. As f' increases the interference
m

bandwidth has more effect. At high f', P approaches 0.5.m e

Figure 14 shows typical curves of Pe versus fm for different values
8 m

of i and for 6d=300 , Oi =450, d=10 dB, f'=108 and 6=10. These curves~0

illustrate the dependence of Pe on the interference power. At low f'

the interference has small bandwidth and Fe depends slightly on i.

This behavior is the same as with CW interference.

IV. CONCLUSIONS

We have developed a method for finding the periodic steady-state

weights of an adaptive array receiving an interference signal with

periodic angle modulation. We then used this method to study the

behavior of a two-element array subjected to an interference signal with

sinusoidal phase modulation. This interference causes the array weights

to cycle sinusoidally with time, both in magnitude and phase. The

modulated weights cause the desired signal to have envelope (but not

phase) modulation at the array output.
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The envelope modulation is largest when the interference arrives

close to the desired signal in space. The envelope modulation increases

with the bandwidth of the input interference signal. Phase modulated

interference also causes the array output SINR to vary with time. When

the array is used in a digital communication system, such SINR variation

increases the bit error probability.
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